40543 40559 40577 40583 40591 40597 40609 40627 40637 40639 35869 35879 35897 35899 35911 35923 35933 35951 35963 35969 46451 46457 46471 46477 46489 46499 46507 46511 46523 46549 65881 65899 65921 65927 65929 65951 65957 65963 65981 65983 8389 8419 8423 8429 8431 8443 8447 8461 8467 8501 33911 33923 33931 33937 33941 33961 33967 33997 34019 34031 The number 1 is neither prime nor composite. P(n)=P(n2)+P(n3). The second prime number, p2 = 3. 10357 10369 10391 10399 10427 10429 10433 10453 10457 10459 95881 95891 95911 95917 95923 95929 95947 95957 95959 95971 For full functionality of this site it is necessary to enable JavaScript. 3, 5, 11, 17, 31, 41, 59, 67, 83, 109, 127, 157, 179, 191, 211, 241, 277, 283, 331, 353, 367, 401, 431, 461, 509, 547, 563, 587, 599, 617, 709, 739, 773, 797, 859, 877, 919, 967, 991 (OEIS:A006450). Input: N = 1032 Output: 2 Explanation: Digits of the number - {1, 0, 3, 2} 3 and 2 are prime number Approach: The idea is to iterate through all the digits of the number and check whether the digit is a prime or not. 24671 24677 24683 24691 24697 24709 24733 24749 24763 24767 1229 1231 1237 1249 1259 1277 1279 1283 1289 1291 For n 2, write the prime factorization of n in base 10 and concatenate the factors; iterate until a prime is reached. 11839 11863 11867 11887 11897 11903 11909 11923 11927 11933 33029 33037 33049 33053 33071 33073 33083 33091 33107 33113 62921 62927 62929 62939 62969 62971 62981 62983 62987 62989 (the 10,000th is 104,729) 8747 8753 8761 8779 8783 8803 8807 8819 8821 8831 10247) because 0 will be in the solution less frequently (can't be the leading digit), meaning you gain less info on average. 18521 18523 18539 18541 18553 18583 18587 18593 18617 18637 84131 84137 84143 84163 84179 84181 84191 84199 84211 84221 15263 15269 15271 15277 15287 15289 15299 15307 15313 15319 Primes in the Lucas number sequence L0=2, L1=1, 70913 70919 70921 70937 70949 70951 70957 70969 70979 70981 92761 92767 92779 92789 92791 92801 92809 92821 92831 92849 3, 7, 31, 211, 2311, 200560490131 (OEIS:A018239[5]). 49363 49367 49369 49391 49393 49409 49411 49417 49429 49433 No prime number greater than 5 ends in a 5. 67157 67169 67181 67187 67189 67211 67213 67217 67219 67231 37579 37589 37591 37607 37619 37633 37643 37649 37657 37663 35521 35527 35531 35533 35537 35543 35569 35573 35591 35593 6679 6689 6691 6701 6703 6709 6719 6733 6737 6761 Solution Perform the divisibility test to identify composite and prime numbers. If you want to find out more about his sieve for finding primes, and print out some Sieve of Eratosthenes worksheets, use the link below. 75629 75641 75653 75659 75679 75683 75689 75703 75707 75709 45191 45197 45233 45247 45259 45263 45281 45289 45293 45307 52817 52837 52859 52861 52879 52883 52889 52901 52903 52919 127 131 137 139 149 151 157 163 167 173 As of April2017[update] these are the only known generalized Fermat primes for a 24. 10861 10867 10883 10889 10891 10903 10909 10937 10939 10949 Therefore, the total number of combinations possible are 10 10 10 10 10 = 1,00,000. 104087 104089 104107 104113 104119 104123 104147 104149 104161 104173 We also have thousands of freeCodeCamp study groups around the world. Factors of 220 are integers that can be divided evenly into 220. 52583 52609 52627 52631 52639 52667 52673 52691 52697 52709 44647 44651 44657 44683 44687 44699 44701 44711 44729 44741 71399 71411 71413 71419 71429 71437 71443 71453 71471 71473 56813 56821 56827 56843 56857 56873 56891 56893 56897 56909 5 18251 18253 18257 18269 18287 18289 18301 18307 18311 18313 19p 1 1 (mod p2): 3, 7, 13, 43, 137, 63061489 (OEIS:A090968)[20] For more see Prime Number Lists. 49783 49787 49789 49801 49807 49811 49823 49831 49843 49853 Primes p for which p2 divides (p1)! 10273 10289 10301 10303 10313 10321 10331 10333 10337 10343 And if n is 20, the output should be "2, 3, 5, 7, 11. 47431 47441 47459 47491 47497 47501 47507 47513 47521 47527 55339 55343 55351 55373 55381 55399 55411 55439 55441 55457 The only factors of 2 are 1 and 2. All integers (except 0 and 1) have at least two divisors - 1 and the number itself. 56713 56731 56737 56747 56767 56773 56779 56783 56807 56809 42461 42463 42467 42473 42487 42491 42499 42509 42533 42557 57667 57679 57689 57697 57709 57713 57719 57727 57731 57737 73 79 83 89 97 101 103 107 109 113 69193 69197 69203 69221 69233 69239 69247 69257 69259 69263 As of 2018[update], these are the only known Wilson primes. As of 2011[update], these are the only known Stern primes, and possibly the only existing. Eratosthenes was a Greek mathematician (as well as being a poet, an astronomer and musician) who lived from about 276BC to 194BC. 20161 20173 20177 20183 20201 20219 20231 20233 20249 20261 90499 90511 90523 90527 90529 90533 90547 90583 90599 90617 8837 8839 8849 8861 8863 8867 8887 8893 8923 8929 x Examples: Input: D = 1 Output: 2 3 5 7 Input: D = 2 Output: 11 13 17 19 23 29 31 37 41 43 47 53 61 67 71 73 79 83 89 97 Recommended: Please try your approach on {IDE} first, before moving on to the solution. The digit 6 is in the prime number and in the correct spot. 45413 45427 45433 45439 45481 45491 45497 45503 45523 45533 19, 31, 43, 47, 61, 67, 71, 79, 101, 137, 139, 149, 193, 223, 241, 251, 263, 277, 307, 311, 349, 353, 359, 373, 379, 419, 433, 461, 463, 491, 509, 541, 563, 571, 577, 587 (OEIS:A120337). 14423 14431 14437 14447 14449 14461 14479 14489 14503 14519 Roll. 2010-2022 Math Salamanders Limited. 13997 13999 14009 14011 14029 14033 14051 14057 14071 14081 6n+5: 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113 (OEIS:A007528) Pick a random card from a deck. 95549 95561 95569 95581 95597 95603 95617 95621 95629 95633 {\displaystyle {{2p-1} \choose {p-1}}\equiv 1{\pmod {p^{4}}}.}. Before I show you the list, here's how to generate a list of prime numbers of your own using a few popular languages. 90379 90397 90401 90403 90407 90437 90439 90469 90473 90481 54371 54377 54401 54403 54409 54413 54419 54421 54437 54443 47237 47251 47269 47279 47287 47293 47297 47303 47309 47317 55681 55691 55697 55711 55717 55721 55733 55763 55787 55793 81233 81239 81281 81283 81293 81299 81307 81331 81343 81349 53453 53479 53503 53507 53527 53549 53551 53569 53591 53593 31379 31387 31391 31393 31397 31469 31477 31481 31489 31511 2 14867 14869 14879 14887 14891 14897 14923 14929 14939 14947 12647 12653 12659 12671 12689 12697 12703 12713 12721 12739 Here is JavaScript code to generate a list of an arbitrarily large number of prime numbers. The classes 10n+d (d = 1, 3, 7, 9) are primes ending in the decimal digit d. 2n+1: 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53 (OEIS:A065091) 56311 56333 56359 56369 56377 56383 56393 56401 56417 56431 6143 6151 6163 6173 6197 6199 6203 6211 6217 6221 Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors. 51503 51511 51517 51521 51539 51551 51563 51577 51581 51593 56509 56519 56527 56531 56533 56543 56569 56591 56597 56599 8117 8123 8147 8161 8167 8171 8179 8191 8209 8219 x 10663 10667 10687 10691 10709 10711 10723 10729 10733 10739 p 91423 91433 91453 91457 91459 91463 91493 91499 91513 91529 23831 23833 23857 23869 23873 23879 23887 23893 23899 23909 77983 77999 78007 78017 78031 78041 78049 78059 78079 78101 See also: Prime Numbers from 1-100 and 4-Digit Prime Numbers These are the Prime Numbers from 101~1000. 16921 16927 16931 16937 16943 16963 16979 16981 16987 16993 Primes that remain prime when the leading decimal digit is successively removed. 63029 63031 63059 63067 63073 63079 63097 63103 63113 63127 4591 4597 4603 4621 4637 4639 4643 4649 4651 4657 A prime number is a natural number greater than 1 that has no positive divisors other than 1 and itself. 72859 72869 72871 72883 72889 72893 72901 72907 72911 72923 47837 47843 47857 47869 47881 47903 47911 47917 47933 47939 Not a single prime number greater than 5 ends with a 5. 4n+1: 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137 (OEIS:A002144) For a = 2, these are the Mersenne primes, while for a = 10 they are the repunit primes. 29927 29947 29959 29983 29989 30011 30013 30029 30047 30059 {\displaystyle p} Follow these 3 easy steps to get your worksheets printed out perfectly! 81353 81359 81371 81373 81401 81409 81421 81439 81457 81463 41189 41201 41203 41213 41221 41227 41231 41233 41243 41257 59369 59377 59387 59393 59399 59407 59417 59419 59441 59443 32833 32839 32843 32869 32887 32909 32911 32917 32933 32939 87251 87253 87257 87277 87281 87293 87299 87313 87317 87323 The nth prime number can be denoted as pn, so: The first prime number, p1 = 2. 12227 12239 12241 12251 12253 12263 12269 12277 12281 12289 {\displaystyle {\frac {a{\big (}10^{m}-1{\big )}}{9}}\pm b\times 10^{\frac {m-1}{2}}} For the first 1000 prime numbers, this calculator indicates the index of the prime number. Next onto 8. 78809 78823 78839 78853 78857 78877 78887 78889 78893 78901 4 Idea is to generate all prime numbers smaller . The first few prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23 and 29. 77167 77171 77191 77201 77213 77237 77239 77243 77249 77261 This means that 1/4 or 1 in 4 numbers from 1-100 are prime. Eight has four factors: 1, 2, 4 and 8. 85703 85711 85717 85733 85751 85781 85793 85817 85819 85829 13417 13421 13441 13451 13457 13463 13469 13477 13487 13499 54449 54469 54493 54497 54499 54503 54517 54521 54539 54541 The probability of the existence of another Fermat prime is less than one in a billion.